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J. Phys. A :  Math. Gen. 16 (1983) 2121-2131. Printed in Great Britain 

Further polynomial-type eigenfunctions 

J Heading 
Department of Applied Mathematics, The University College of Wales, Penglais, 
Aberystwyth, Dyfed SY23 3B2,  UK 

Receivcd 12 November 1982 

Abstract. The method developed previously by the author for obtaining eigenfunctions 
in the form (polynomial) x exponential (polynomial) for a linear second-order differential 
equation in normal form is extended to embrace the general case when the interaction 
potential (or square of the refractive index profile) has the form (polynomial)/(polynomiali. 
Various situations arise in the development of the theory, some of which can be concluded 
algebraically, but the majority require numerical calculations regarding the rank of quite 
a general matrix containing many unknown parameters. 

1. Introduction 

In recent years, considerable interest has been focused on the Schrodinger equation 
with various forms of potential interaction terms. Some of the investigations have 
embraced numerical methods, while others have been concerned with the production 
of special eigenfunctions of the form (polynomial) x exp(polynomial), a form that we 
shall describe as PEP, In particular, we may single out two equations for comment, 
namely 

d2w/dZ2 -+ [E - Z' -Az2/(1 f g z ' ) ] ~  = 0, 

d2W/dz2+ ( E  - z 2 - A z 2 " ) w  = 0.  
(1) 

(2) 
Kaushal (1979\, Mitra (1978) and Bessis and Bessis (1980) have calculated a wide 
range of eigenvalues of equation ( l ) ,  while Biswas et al (1973) have considered 
equation (2) numerically. 

On the analytical side, Flessas (1981) has considered briefly the even parity 
eigenfunctions of (1) in simple cases, with no investigation of the properties of the 
eigenfunctions. Varma (1981) has also considered briefly both the even parity and 
the odd parity solutions of this same equation, but again no properties of the eigenfunc- 
tions were investigated. Lai and Lin (1982) also gave the odd parity eigenfunctions 
of (l), and generally expanded the energy eigenvalue E,, as a series in h up to O(h4), 
where h = q/2(1 q = 2n + 1. Extensive calculations are reported of the first 
fourenergyvaluesforg=0.1,0.5,  1.0,2.OandA=0.1,0.5, 1.0,2.0,5.0,  10.0,50.0, 
100.0. Flessas (1982) extended his work to investigate further eigenvalues and 
eigenfunctions of (1) by means of definite integrals. Heading (1982) gave a complete 
theory of these PEP eigenfunctions of (11, together with many properties of the 
eigenvalues and eigenfunctions. Whitehead et a1 (1982) have also provided a further 
investigation into solutions of equation ( 1). 

@ 1983 The Institute of Physics 2121 
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Flessas and Watt (1981) considered a different form of equation (2), using the 
polynomial potential function Bz + Czz +Dz + Ez4, C > 0, E > 0, where there were 
two special relations between the parameters B, C, D, E. Saxena and Varma (1982) 
have investigated the eigenvalues and eigenfunctions for the potential - z -*  + 2Az + 
2AZz2 (our notation) for certain definite values of A, when the eigenfunctions are 
restricted to the PEP type. Finally, Znojil (1982) has given a comprehensive investiga- 
tion for the potential Zarzr  (our notation), where r ranges over a set of rational 
numbers, the a's not being independent when PEP eigenfunctions are required. 

In the light of these diverse investigations, we propose here to consider a more 
general interaction potential that includes the above potentials as simple special cases. 
We shall seek PEP eigenfunctions of the equation 

w = o ,  d2w polynomial (i) in z 
-+( dz polynomial (ii) in z 

(3) 

where certain coefficients in the polynomials cannot be arbitrary for PEP eigenfunctions 
to exist, and where the interval under consideration is -w<z <CO when the 
denominator in (3) has no zeros. If the denominator has zeros, then PEP eigenfunctions 
can still be sought in intervals of z that exclude singularities of the equation. A 
general procedure will be discussed, with certain numerical calculations provided to 
show what numerical results emerge in special cases. Finally, a brief investigation is 
made when the two polynomials in the PEP solutions are multiplied by non-integral 
powers of z ,  though only integral powers of z are to appear in equation (3). This 
investigation also enables us to consider solutions of (3) that represent propagating 
wave forms rather than eigenfunctions (namely, the exponential index will be purely 
imaginary). 

2. The general identity 

The PEP function w ( z )  = g(z)  eh('), where g and h are polynomials in z of degrees G 
and H respectively, is required to satisfy the second-order differential equation in 
normal form (3) .  More explicitly, this can be rearranged to the form 

d 2 w / d z 2 + [ j ( z ) + p ( z ) / q ( z ) ] w  = 0 ,  (4) 
where j ,  p ,  q are polynomials of degrees J,  P, Q respectively, where Q = P + 1 generally 
after long division. Real zeros of q are excluded from the real range of z under 
consideration. If the whole of the real-z axis is included, q must be positive definite 
when z is real so as to avoid singularities. 

The second-order differential coefficient of w = geh yields 

w I t  = [(g" + 2g'h ')/g + + h qw, 

where a prime denotes differentiation with respect to z. Now write 

(g"+ 2g'h')lg - r  - p / q ,  

where r is a polynomial of degree R, yielding finally 

wIf + ( r  - h r 2  - h f f  + p / q ) w  = 0, 

in the required form (4). 
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In order that w = geh should satisfy (6), q must be a factor of g so that the 
denominator q cancels upon substitution into (6). Let g = qf, where f is a polynomial 
of degree F. Identity ( 5 )  becomes 

(7) 

Polynomials q, f, h, r, p satisfying this identity enable us to write down equations in 
form (6) possessing PEP solutions. 

(qf)” + 2(qf)’h ’ + qfr + fp = 0. 

3. Solution in the general case 

The degrees of the four terms in (7) are 

F + Q - 2 ,  F+Q + H -2, F + Q + R ,  F + P ,  

respectively. The two highest values are the second and third, so these must be equal, 
yielding 

H = R + 2 ~ 2 .  (8) 

Now write 

p =po+p1z +. . . + p p z P ,  q =qO+qlZ +.  . .+qQzQ,  

where, for full generality, Q = P + 1. Since the polynomials p and q only occur in the 
ratio p/q, without loss of generality we can write qQ = 1. Also let 

f = f o + f 1 z + .  . .+fJ 
(where ultimately only the ratios of the f’s are relevant), 

H h = h l z + h 2 z 2 +  . . . +  hHZ 

(where any term ho is irrelevant since it appears in an exponential index), 
R r = r O + r l z +  . . . +  rRZ , 

w i t h R = H - 2 .  
The number of coefficients is therefore 2Q + F + 2H. When the coefficients 

of the various powers of z in (7) are equated to zero, the number of equations is 
F + Q + H  - 1, The overall coefficient of the highest power of z is 

ZfFqa(F+Q)hHH +fFqQrR; 

since this vanishes, we have 

rR = -2(F + Q)HhH. 

Omitting this equation and coeRcient, we have 2Q + F + 2 H  - 1 coefficients and 
F + Q +H - 2 equations. 

In particular, let the polynomials h and 4 be specified (though this choice is not 
necessary). The equations derived from identity (7) by equating coefficients of powers 
of z to zero all contain fo,fl ,  . . . , fF linearly, their coefficients being the unknown 
coefficients appearing in the polynomials p and r. The F + Q + H - 2 equations can 
be arranged in the form of a matrix equation, namely 

Mf =o ,  
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where the column f contains f o ,  f l ,  . . . , f F  in order, and M contains 1 + F  columns 
and F + Q + H - 2 rows. For column f to exist, we have the condition that rank M s F. 
Every minor of order 1 + F in M must vanish, but in practice this means generally 
that Q + H - 2 determinants must vanish. 

Since h and q are given and rR is known, the remaining unknowns are the P+ 1 
coefficients of p and the R coefficients of r. Their total, P + R + 1, equals the number 
of vanishing determinants, since Q = P + 1 and H = R + 2. As soon as p and r have 
been found, for each set of values of the coefficients the columnf follows immediately. 

M contains the coefficients of p and r through the terms qfr and f p  in (7). Thus 
p o  lies on the pseudo-diagonal through the top left-hand corner of M ;  p1 lies on the 
next pseudo-diagonal below, and so on. The coefficients of r occur on and to the left 
of the pseudo-diagonal containing p o .  In particular, M is square when Q + H = 3, 
implying that P +R = 0. Hence P = R = 0, and p = p o  and r = ro follows from (9). 
Thus P O  is the only outstanding parameter in M ;  in fact, -po equals any characteristic 
root of N, where N denotes M with p o  deleted down its leading diagonal. There will 
then be F + 1 characteristic vectors f. 

4. Solutions in the case of polynomials in t m  

Identity (7) can be satisfied if all polynomials ascend in powers of z m ,  where m is an 
integer greater than unity. From (8), we deduce that 

degree of r = mH - 2 ,  H a l ,  

where the degree of h will be mH. Accordingly, we take 

q =q( )+q l z"+ .  .+qQZom with = 1, 

p = p l z  n'-2 f p 2 2 2 m - 2 + ,  . .+pQZQm-2, 

f = fO+flZm +. . , + f F Z F m ,  

h = h l z m + h 2 z Z m +  . . . +  hHzHm, 
r = r l z  m - 2  + r 2 z 2 m - 2 + .  . .+rHzmH- ' .  

Other possibilities can be explored, such as when 

f = f l Z k f f Z Z m + k + .  . . f F Z F m T k ,  O s k  c m  -1. 

In the following investigation, we restrict ourselves to the case k = 0, since the method 
is the same in every case. 

Substitution into identity (.7) yields the powers of z :  zm-', z ' " - ~ ,  
. . . ,  z , implying that F + Q + H equations are obtained. The coefficients 
of the highest power of z yield 

Fm +Om + H m  - 2 

2(Q +F)mqQfFmhH i-qQfFrH = 0 
or 

r H  = -2(Q +F)Hm2hH.  

Apart from this last equation, there will be Q + F + H - 1 equations, again rep- 
resented in matrix form as 

Mf = o ,  
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where f denotes the column consisting of f o ,  f l ,  . . . , f F .  So that r a n k M < F  +1, 
generally it suffices that Q +H - 1 minors vanish. Again we may postulate that q and 
h are given, leaving Q + H  - 1 coefficients in p and r to be determined from these 
equations. 

In particular, M is a square matrix when Q + H  = 2, yielding the two cases 
(i) H =  1 , Q =  1 ;  
(ii) H = 2, Q = 0. 

These are examined in the following sections. 

5. Case (i) when M is square 

With H = 1, Q = 1 ,  let 

q = q o + z  m 9 p = p l Z m - 2 ,  

f = f o + f , z m + .  . * + f F Z F m ,  

m-2 h = hlzm,  r = r l z  , 

where r l  = -2(F+ l ) m 2 h l .  

N, where 
To illustrate this when F = 2 ,  we note that - p l  is a characteristic root of the matrix 

I ' m ( m - l ) + q o r l  q o m h  - 1 )  0 
2m(2m - 1) + 2q0h1m2+qorl N = I  2h lm2  2qcm (2m - 1 )  

0 4m2h + r l  3m(3m -1)+4q0h1m2+qor1 

where r l =  -6m2hl. Thus the differential equation 

m - 2  +----;;)w=o p l Z m - 2  -6m ' h l z  m - 2  - h:m2z2m-2 - h l m ( m  - 1)z 
dz 90 + 

has a solution 

w = ( q O + z m ) ( f o  t f l z m + f 2 z 2 m )  exp(hlzm);  

h l  will be negative if w + 0 as z + fa when m is even. 

6. Case (ii) when M is square 

In identity (7),  let p = 0, q = 1,  giving the simpler identity 

f"+ 2f'h' + f r  = 0 ;  

this ensures that w = f eh satisfies the equation 

d2w/dz2+(r  - h"- h" )w = 0, 

the bracket now being a polynomial, without any denominator occurring. 
As a simple example, let m = 2, H = 2 ,  h = -z4  (so as to achieve a transient solution 

as z + *CO) ,  r = ro+rl.z with r l  = 32. The only cases which can be treated analytically 2 
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as distinct from numerically occur when F = 0, 1 , 2 .  In the latter case, we have 

with io = 0, *16, and the elements off being (3,0,  -8), (1, -8, 8), (1, 8 , 8 )  respectively, 
yielding 

d2W/dz2 + [ l o +  (11 + 1 2 ) ~ ~  - 1 6 ~ ~ 1 ~  = 0. 

The complete range of possibilities for F = 0, 1 , 2  is given by the following table: 

0 0 1 

4 J z  16 1, -2J2  
-4J2 16 1 , 2 J 2  

0 32 3,0, -8 
16 32 1, -8,s 

-16 32 138, 8 

More generally, let 
m - 2  h = -hlZm - z 2 m  r = r o z  +r1z2m-2, 

f = f o t f 1 z " + .  . *+fFZFm, 

where r l  = 4Fm2.  Thus when F = 3, we have 

r0 m(m - 1) 0 0 
M =  [12r2 io -2hlm2 2m(2m-1)  0 

8 m 2  ro-4hlmZ 3m(3m -1) 
0 0 4 m z  

If N denotes the matrix M with the symbol ro removed, for general values of F we have 
2 j =  1 , 2 , .  . . , F + l ,  N,, = - 2 ( j  - 1)hlm , 

N,,,+I =im( im - 11, j = 1 , 2  , . . . ,  F, 

j =  1 , 2 , .  . . , F, = 4 ( F - j + l ) m 2 ,  

where -io is any characteristic root of N. Under these circumstances, 

w = ( f " + f l Z  m + .  . .+fFzFm)exp(-hIzm-zZm) 

is a solution of the equation 
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The only case that is susceptible to easy analytical manipulation occurs when F = 1. 
We have 

0 
N = ( 4 m 2  

with 

r i  - 2h lm2ro-4m3(m - 1 ) = O  

and 

r o = h l m 2 f [ h : m 4 + 4 m 3 ( m  - 1 ) ] 1 ’ 2 ,  f o : f l = m ( m - l ) : - r o .  

Computer calculations of the characteristic roots and vectors of N have been made 
for all combinations given by 

m = 2 ,5 ,  10, F = 1,2,  5 ,  10, 

h l = 0 , 0 . 5 ,  1 ,5 ,  10,50, 100, 

introducing matrices up to order 11. We present a short table of some of the results 
below, to show the order of magnitudes of the characteristic roots that emerge from 
the calculations when m = 2. 

i= h,=0 

1 5.656 85 
-5.656 85 

2 1 
-0.113 21 

0.14741 

5 66.4539 
-66.453 9 

8.202 63 
-8.202 63 
33.415 6 

-33.415 6 

10 191.353 

142.580 
-191.353 

-142,580 
97.842 1 

57.697 4 
-97.842 1 

-57.697 4 
0 

23.513 9 
-23.513 9 

0.5 

4 
-8 

-2.092 11 
11.455 5 

-21.363 4 

-80.056 2 
53.787 2 

-15.477 2 
2.803 36 

-44.505 3 
23.448 2 

165.504 

119.143 
-2 18.468 

-167.31 1 
76.986 2 

-77.187 7 
-39.443 9 

10.708 4 

39.828 6 

-9.689 55 

-120,070 

1 

2.928 20 
-10.928 2 

8 
-4.686 29 

-27.313 7 

-94.472 2 
42.195 7 

15.048 1 
-56.467 1 

-24.412 3 
-1.892 19 

-246.743 
- 193.200 

141.045 
-143.496 

97.147 0 
-97.999 3 

57.7102 
-57.277 5 

24.170 1 
-22.636 8 

1.271 74 

5 10 50 100 

0.784 61 
-40.784 6 

1.629 44 
-37.229 9 
-84.399 5 

4.701 20 
-25.384 2 
-66.533 8 

-114.961 
-169.250 
-228.572 

15.397 1 
-1.658 87 

-32.428 5 
-72.753 7 

-119.926 
-172.804 
-503.247 
-230.662 
-429.552 
-359.382 
-292.983 

0.398 02 
-80.398 0 

0.803 92 
-78.461 0 

-162.343 

2.073 87 
-72.434 9 

-152.079 
-236.272 
-324.587 
-416.701 

4.403 75 
-61.549 1 

-133.779 
-211.321 
-293.545 
-379.999 
-470.339 
-564.292 
-762.179 
-66 1.634 
-865.765 

0.079 98 
-400.080 

0.160 03 
-399.681 
-800.480 

0.400 56 
-398.480 
-798.324 
- 1 199.13 
-1600.88 
-2003.59 

0.802 73 
-396.473 
-794.720 

-1 193.93 
- 1594.1 1 
-1995.24 
-2397.32 
-2800.35 
-3204.33 
-3609.24 
-4015.09 

0.040 00 
-800.040 

0.080 00 
-799.840 

-1600.24 

0.200 07 
-799.240 

-1599.16 
-2399.56 
-3200.44 
-4001.80 

0.400 34 
-798.239 

-1597.36 
-2396.96 
-3198.04 
-3997.60 
-4798.65 
-5600.16 
-6402.16 
-7204.64 
-8007.59 

All the roots are real, a fact that can be proved directly from the differential 
equation (1 1 ) .  As h 1 increases in value, one root remains small, but the others are 
large negative numbers. Asymptotic forms can be found for the roots, using the same 
method as given in Heading (1982). This would explain why, for large h l ,  the roots 
for one value of F are repeated with minor changes in value for higher values of F. 
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7. The special status of the Hermite polynomials 

For general values of m z 2 ,  and with H = 1 ,  write 

f=fo+f1z” + . .  . + f F z F m ;  
m -2 h = - z m  r =roz , 

identity (7) yields the matrix 

In this special case, its determinant can be evaluated immediately, 

ro(ro - 2m *) ( ro  - 4m *) . . . (rO - 2Fm ’). 

This vanishes when ro = 0, 2m2,  4m2,  . . . . 
Moreover, the differential equation satisfied by w = f z h  is 

2 2 m - 2  d 2 w / d z 2 + [ r o z m - 2 + m ( m - l ) z m - 2 - m  z ] w  =0, 

discussed by Heading (1974, 1977) in connection with phase-integral methods applied 
to transition points of order greater than unity. Only when m = 2 does one term in 
the bracket equal a constant, the resulting equation being that for the harmonic 
oscillator, and its solution contains the Hermite polynomials. For any other value of 
m, the eigenvalue term ro multiplies a function of z .  The special form of the determinant 
ensures that in this case an infinite number of PEP solutions are produced. 

8. The case when M is not square 

To illustrate the nature of the problem, let m = 2 .  The complete resolution of the 
problem, analytically as distinct from numerically, is only possible when F = 0, 1. 
Thus consider 

Q=2, =q0+z4, 

P =  1 ,  p =Po+Plz2,  
H = 2 ,  h = - z 4  

2 R = l ,  r = r o + r l z  , 

F = 0 ,  1, f = f o  or f o + f l z 2 .  

Thus the equation 

d2w/dz2 +[ro + r l z 2  - 16z6 + 12z2 + ( p o + p l z 2 ) / ( q o  + z ‘ ) ]w  = 0 

has a solution 

4 
w = ( fo+f l z2 ) (qo+z4)  exp(-z 1. 
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Substitution into (7) yields five equations. The last gives rl = 48, and the first four 
equations may be written in matrix form as 

/ qoro+po 24 0 \ 

where qo is given. When this matrix is made to be of rank 1, we have three equations 
for ro, Po,  p 1. 

When F = 0, we have rl '= 32 and 

12+32qo+pl f o = o ,  i qor::o i 
yielding ro=po  = 0, and pl  = -(12+32q0). Hence w = (q0+z4)  exp(-z4) satisfies the 
equation 

d2w/dz2 + [44z2 - 1 6 ~ ~ -  (12 + 3 2 q o ) ~ * / ( q o + z ~ ) ] ~  = 0. 

To solve (12) when F = 1, write E = qoro+po, S = 12 +48q0+pl ,  implying that 

l E  2qo \ 
S E 
ro 18-16q0+S 

rank 1 
\ 16 

giving E2 = 2Sq0, E (18 - 164, + S )  = 240ro, Ero = 32qo. This yields a quadratic 
equation for S :  

S 2  + (18- 16qo)S -32q0= 0 
with roots 

S = 8q0-9* (64qi - 112qo+81)1'2, 

from which E, ro, PO and p1 can be found. For higher values of F, numerical procedures 
are necessary to determine the parameters that make rank M = F. 

9. Conclusion and further extensions 

We have explained a method whereby a solution of the form g(z)e"'" satisfies a 
second-order differential equation in normal form, the coefficients of w" and w being 
polynomials' in z .  The method involves the calculation of parameters to make the 
rank of a certain matrix equal to a specific value, or in a special case to ensure that 
the determinant of a square matrix is zero. The simpler cases can be evaluated 
algebraically. 

But when a fractional index is allowed to precede a polynomial in f and h, though 
not in the differential equation (4), then a singularity will exist at z = 0 in the differential 
equation, 

In the general theory given in 0 2, replace f by zxf where f is a polynomial of 
degree F, and h by z Yh where h is a polynomial of degree H ;  Y > 0. The denominator 
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q will no longer have a constant term qO. In ( 6 ) ,  r - h”- h” must be a polynomial j ,  
so condition (7) must be rewritten as 

( 1 3 )  (qzxf)”+2(qxf)’(z  Yh)f + q z x f [ j + ( z  Y h ) r 2 + ( ~  Y h ) f ’ ] + z x f p  = 0. 

Consider, firstly, q0 = 0, q1 # 0. Then the lowest powers of z in the six terms in 
( 1 3 )  are respectively 

x-1, X + Y - 1 ,  x + 1 ,  X + 2 Y - l ,  X + Y - 1 ,  x. 
The lowest index is X - 1 ,  and there will be no terms in identity ( 1 3 )  to cancel this 
unless Y = 0, which is not a value under discussion. Hence we must have q0 = q1  = 
0,  q2 # 0, yielding for the lowest indices in the six terms 

x, X + Y ,  x+2, X + 2 Y ,  X + Y ,  x. 
The lowest index X occurs twice, enabling cancellation to take place. So that the 
fourth term with the lowest index X + 2 Y  can fit into the scheme for identity ( 1 3 ) ,  
we must have 2 Y = integer, and to be relevant, this must be an odd integer for a 
singularity to exist in z Yh. We shall write Y = N / 2 ,  where N is an odd integer. 

In ( 1 3 ) ,  the powers of z in the second and fifth terms do not match those in the 
remaining terms. Hence, for the identity to be satisfied, 

2(qzXf)’(z 74)’ + qz “f(2 Yh)” = 0,  

(2 Yh)’oc l / (qz”f)’ .  
or 

This is clearly not possible when h, q and f are polynomials of more than one 
term in each; they will be simply powers of 2 .  Accordingly, let q = z2 ,  h = ho, f = f o  
(any actual first power of z in f and h being accumulated in z and z Y ) .  Hence 

(2 N/2h  0)‘ cc 1 / (2 +2f0)2, 

x = -1 4 N - i .  

(qz xf)rf + qz x f l  j + ( z  yh lf2] + z xfp = 0,  

yielding 

The remaining identity in ( 1 3 )  is 

yielding 

( X  + 2 ) ( ~  + 1 )  + z 2 j  + z 2 h z ~ 2 ~ 2 Y - 2 + p  = 0. 

Hence when Y = $, 
p = - ( X + 2 ) ( x + l ) - $ h ; z ,  j = O ;  

when Y s:, 
2 2 2 Y - 2  p = - ( X  + 2)(X + l ) ,  j = - h o Y  z . 

Thus we conclude that w = z-N/4c1/2 exp(hOz is a PEP solution of 

w ” +  [- aN2h;zN-2 - &(N2 - 4)z- ’ ]w = 0 ( 1 4 )  
for N odd and greater than 1 ,  and that w = z ‘ I 4  exp(hoz ‘ I 2 )  is a PEP solution of 

~”+&3-44h&z)z-*w = O  ( 1 5 )  
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when Y = i. Although the details of the derivations are distinct, it should be noted 
that when N = 1 in (14), equation (15) is produced. Additionally, N may be an even 
integer, though in this case the exponential function in the PEP solution does not 
contain a singularity. The reader should also note how the WKBJ solution of (14) 
corresponds to the exact solution. The WKBJ solution that ignores the term z - ~  in 
(14) is the exact solution of the equation. This is not the same thing as saying that 
the WKBJ solution is the exact solution of the equation, since the only differential 
equations with this property are those in which the refractive index is constant or 
where it is an inverse square function. 

Throughout this paper, the PEP solution w has consisted of an exponential function 
containing a real index. Wave propagation (with a real square of the refractive index 
profile) would lead to exponential functions with a purely imaginary index. In this 
case, we may replace h o  by iho, implying that w = z -N/4+1/2 exp(ihoz satisfies 

for all integers N .  The complex conjugate w * is also a solution, meaning that the one 
equation has two PEP solutions. A more detailed examination would show that, if 
w = g e , then h’oc l /g2 ,  implying that h and g are powers of z without attached 
polynomials. 

ih 
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